Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Neuropsychol Rev ; 2023 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-37300725

RESUMO

In recent years, there has been an increasing quest in improving our understanding of the neurocognitive deficits underlying adult attention-deficit/hyperactivity disorder (ADHD). Current statistical manuals of psychiatric disorders emphasize inattention and hyperactivity-impulsivity symptoms, but empirical studies have also shown consistent alterations in inhibitory control. To date, there is no established neuropsychological test to assess inhibitory control deficits in adult ADHD. A common paradigm for assessing response inhibition is the stop-signal task (SST). Following PRISMA-selection criteria, our systematic review and meta-analysis integrated the findings of 26 publications with 27 studies examining the SST in adult ADHD. The meta-analysis, which included 883 patients with adult ADHD and 916 control participants, revealed reliable inhibitory control deficits, as expressed in prolonged SST response times, with a moderate effect size [Formula: see text] = 0.51 (95% CI: 0.376-0.644,[Formula: see text] < 0.0001). The deficits were not moderated by study quality, sample characteristics or clinical parameters, suggesting that they may be a phenotype in this disorder. The analyses of secondary outcome measures revealed greater SST omission errors and reduced go accuracy in patients, indicative of altered sustained attention. However, only few (N < 10) studies were available for these measures. Our meta-analysis suggests that the SST, in conjunction with other tests and questionnaires, could become a valuable tool for assessing inhibitory control deficits in adult ADHD.

2.
J Autism Dev Disord ; 2023 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-37079181

RESUMO

Fixel-based analysis was used to probe age-related changes in white matter micro- and macrostructure of the corpus callosum between participants with (N = 54) and without (N = 50) autism spectrum disorder (ASD). Data were obtained from the Autism Brain Imaging Data Exchange-II (ABIDE-II). Compared to age-matched controls, young adolescents with ASD (11.19 ± 7.54 years) showed reduced macroscopic fiber cross-section (logFC) and combined fiber-density and cross-section (FDC). Reduced fiber-density (FD) and FDC was noted in a marginally older (13.87 ± 3.15 years) ASD cohort. Among the oldest ASD cohort (17.07 ± 3.56 years), a non-significant trend indicative of reduced FD was noted. White matter aberration appears greatest and most widespread among younger ASD cohorts. This supports the suggestion that some early neuropathophysiological indicators in ASD may dissipate with age.

3.
Cortex ; 161: 1-12, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36871479

RESUMO

Functional neuroimaging has consistently implicated the fronto-basal ganglia-cerebellar circuit in procedural learning-defined as the incidental acquisition of sequence information through repetition. Limited work has probed the role of white matter fiber pathways that connect the regions in this network, such as the superior cerebellar peduncles (SCP) and the striatal premotor tracts (STPMT), in explaining individual differences in procedural learning. High angular diffusion weighted imaging was acquired from 20 healthy adults aged 18-45 years. Fixel-based analysis was performed to extract specific measures of white matter microstructure (fiber density; FD) and macrostructure (fiber cross-section; FC), from the SCP and STPMT. These fixel metrics were correlated with performance on the serial reaction time (SRT) task, and sensitivity to the sequence was indexed by the difference in reaction time between the final block of sequence trials and the randomized block (namely, the 'rebound effect'). Analyses revealed a significant positive relationship between FD and the rebound effect in segments of both the left and right SCP (pFWE < .05). That is, increased FD in these tracts was associated with greater sensitivity to the sequence on the SRT task. No significant associations were detected between fixel metrics in the STPMT and the rebound effect. Our results support the likely role of white matter organization in the basal ganglia-cerebellar circuit in explaining individual differences in procedural learning.


Assuntos
Substância Branca , Humanos , Adulto , Substância Branca/diagnóstico por imagem , Individualidade , Imagem de Difusão por Ressonância Magnética , Cerebelo/diagnóstico por imagem , Gânglios da Base/diagnóstico por imagem
4.
Dev Cogn Neurosci ; 58: 101171, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36372005

RESUMO

Response inhibition refers to the cancelling of planned (or restraining of ongoing) actions and is required in much of our everyday life. Response inhibition appears to improve dramatically in early development and plateau in adolescence. The fronto-basal-ganglia network has long been shown to predict individual differences in the ability to enact response inhibition. In the current study, we examined whether developmental trajectories of fiber-specific white matter properties of the fronto-basal-ganglia network was predictive of parallel developmental trajectories of response inhibition. 138 children aged 9-14 completed the stop-signal task (SST). A subsample of 73 children underwent high-angular resolution diffusion MRI data for up to three time points. Performance on the SST was assessed using a parametric race modelling approach. White matter organization of the fronto-basal-ganglia circuit was estimated using fixel-based analysis. Contrary to predictions, we did not find any significant associations between maturational trajectories of fronto-basal-ganglia white matter and developmental improvements in SST performance. Findings suggest that the development of white matter organization of the fronto-basal-ganglia and development of stopping performance follow distinct maturational trajectories.


Assuntos
Substância Branca , Adolescente , Criança , Humanos , Inibição Psicológica , Gânglios da Base/fisiologia , Análise e Desempenho de Tarefas , Gânglios
5.
Cortex ; 142: 283-295, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34315068

RESUMO

Previous Diffusion Tensor Imaging (DTI) studies in children suggest that developmental improvements in inhibitory control is largely mediated by the degree of white matter organisation within a right-lateralised network of fronto-basal-ganglia regions. Recent advances in diffusion imaging analysis now permit greater biological specificity, both in identifying specific fibre populations within a voxel, as well as in the underlying microstructural properties of that white matter. In the present work, employing a novel fixel-based analysis (FBA) framework, we aimed to comprehensively investigate microstructure within the fronto-basal-ganglia circuit in childhood, and its contribution to inhibition performance. Diffusion MRI data were obtained from 43 healthy children and adolescents aged 9-11 years (10.42 ± .41 years, 18 females). Response inhibition for each participant was assessed using the Stop-signal Task (SST) and quantified as a Stop-Signal Reaction Time (SSRT). All steps relevant to FBA were implemented in MRtrix3Tissue, a fork of the MRtrix3 software library. The fronto-basal-ganglia circuit were delineated using probabilistic tractography to identify the tracts connecting the subthalamic nucleus, pre-supplementary motor area and the inferior frontal gyrus. Connectivity-based fixel enhancement (CFE) was then used to assess the association between fibre density (FD) and fibre cross-section (FC) with inhibitory ability. Significant negative associations were identified for FD in both the right and left fronto-basal-ganglia circuit whereby greater FD was associated with better inhibition performance (e.g., reduced SSRTs). This effect was specifically localised to clusters of fixels within white matter proximal to the right subthalamic nucleus. We did not report any meaningful associations between SSRT and FC. Whilst findings are broadly consistent with prior DTI evidence, current results suggest that SSRT is predominantly facilitated by subcortical microstructure of the connections projecting from the subthalamic nucleus to the cortical regions of the network. Our findings extend current understanding of the role of white matter in childhood response inhibition.


Assuntos
Imagem de Tensor de Difusão , Substância Branca , Adolescente , Gânglios da Base , Criança , Imagem de Difusão por Ressonância Magnética , Feminino , Gânglios , Humanos , Substância Branca/diagnóstico por imagem
6.
Neuroimage ; 241: 118417, 2021 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-34298083

RESUMO

Diffusion MRI has provided the neuroimaging community with a powerful tool to acquire in-vivo data sensitive to microstructural features of white matter, up to 3 orders of magnitude smaller than typical voxel sizes. The key to extracting such valuable information lies in complex modelling techniques, which form the link between the rich diffusion MRI data and various metrics related to the microstructural organization. Over time, increasingly advanced techniques have been developed, up to the point where some diffusion MRI models can now provide access to properties specific to individual fibre populations in each voxel in the presence of multiple "crossing" fibre pathways. While highly valuable, such fibre-specific information poses unique challenges for typical image processing pipelines and statistical analysis. In this work, we review the "Fixel-Based Analysis" (FBA) framework, which implements bespoke solutions to this end. It has recently seen a stark increase in adoption for studies of both typical (healthy) populations as well as a wide range of clinical populations. We describe the main concepts related to Fixel-Based Analyses, as well as the methods and specific steps involved in a state-of-the-art FBA pipeline, with a focus on providing researchers with practical advice on how to interpret results. We also include an overview of the scope of all current FBA studies, categorized across a broad range of neuro-scientific domains, listing key design choices and summarizing their main results and conclusions. Finally, we critically discuss several aspects and challenges involved with the FBA framework, and outline some directions and future opportunities.


Assuntos
Encéfalo/citologia , Encéfalo/diagnóstico por imagem , Imagem de Difusão por Ressonância Magnética/métodos , Processamento de Imagem Assistida por Computador/métodos , Substância Branca/diagnóstico por imagem , Encéfalo/fisiologia , Imagem de Difusão por Ressonância Magnética/tendências , Humanos , Processamento de Imagem Assistida por Computador/tendências , Fibras Nervosas/fisiologia , Substância Branca/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...